32.膳食核苷酸延缓氧化应激诱导的HUVECs细胞衰老

1.Lu,D.; Thum, T.RNA-based diagnostic and therapeutic strategies for cardiovascular disease.Nat. Rev. Cardiol. 2019, 16, 661–674.[CrossRef]

2.Seals, D.R.;Alexander, L.M. Vascular aging. J. Appl. Physiol. 2018, 125, 1841–1842.[CrossRef]

3.Calcinotto, A.; Kohli,J.; Zagato, E.; Pellegrini, L.; Demaria, M.; Alimonti, A. Cellular Senescence:Aging, Cancer, and Injury.Physiol. Rev. 2019, 99, 1047–1078. [CrossRef]

4.Childs, B.G.; Durik,M.; Baker, D.J.; van Deursen, J.M. Cellular senescence in aging and age-relateddisease: From mechanisms to therapy. Nat. Med. 2015, 21, 1424–1435. [CrossRef]

5.Hernandez-Segura, A.;Nehme, J.; Demaria, M. Hallmarks of Cellular Senescence. Trends Cell Biol.2018, 28, 436–453. [CrossRef][PubMed]

6.Saez-Atienzar, S.;Masliah, E. Cellular senescence and Alzheimer disease: The egg and the chickenscenario. Nat. Rev. Neurosci.2020, 21, 433–444. [CrossRef]

7.Izzo, C.; Vitillo, P.;Di Pietro, P.; Visco, V.; Strianese, A.; Virtuoso, N.; Ciccarelli, M.; Galasso,G.; Carrizzo, A.; Vecchione, C. The Role of Oxidative Stress in CardiovascularAging and Cardiovascular Diseases. Life 2021, 11, 60. [CrossRef] [PubMed]

8.Muñoz-Espín, D.;Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol.Cell Biol. 2014, 15, 482–496.[CrossRef] [PubMed]

9.Said, M.A.; Eppinga,R.N.; Hagemeijer, Y.; Verweij, N.; van der Harst, P. Telomere Length and Riskof Cardiovascular Disease and Cancer. J. Am. Coll. Cardiol. 2017, 70, 506–507.[CrossRef]

10.Tyrrell, D.J.; Blin,M.G.; Song, J.; Wood, S.C.; Zhang, M.; Beard, D.A.; Goldstein, D.R.Age-Associated Mitochondrial Dysfunction Accelerates Atherogenesis. Circ. Res.2020, 126, 298–314. [CrossRef]

11.Fyhrquist, F.;Saijonmaa, O.; Strandberg, T. The roles of senescence and telomere shorteningin cardiovascular disease. Nat. Rev.Cardiol. 2013, 10, 274–283. [CrossRef][PubMed]

12.Camici, G.G.;Savarese, G.; Akhmedov, A.; Lüscher, T.F. Molecular mechanism of endothelialand vascular aging: Implications for cardiovascular disease. Eur. Heart J.2015, 36, 3392–3403. [CrossRef] [PubMed]

13.Wang, J.; Uryga,A.K.; Reinhold, J.; Figg, N.; Baker, L.; Finigan, A.; Gray, K.; Kumar, S.;Clarke, M.; Bennett, M. Vascular Smooth Muscle Cell Senescence PromotesAtherosclerosis and Features of Plaque Vulnerability. Circulation 2015, 132,1909–1919.[CrossRef] [PubMed]

14.Childs, B.G.; Baker,D.J.; Wijshake, T.; Conover, C.A.; Campisi, J.; van Deursen, J.M. Senescentintimal foam cells are deleterious at all stages of atherosclerosis. Science2016, 354, 472–477. [CrossRef]

15. Baker, D.J.;Wijshake, T.; Tchkonia, T.; LeBrasseur, N.K.; Childs, B.G.; van de Sluis, B.;Kirkland, J.L.; van Deursen, J.M. Clearance of p16Ink4a-positive senescentcells delays ageing-associated disorders. Nature 2011, 479, 232–236. [CrossRef]

16.Song, P.; Zhao, Q.;Zou, M.H. Targeting senescent cells to attenuate cardiovascular diseaseprogression. Ageing Res. Rev. 2020, 60,101072. [CrossRef]

17.Che, L.; Hu, L.; Liu,Y.; Yan, C.; Peng, X.; Xu, Q.; Wang, R.; Cheng, Y.; Chen, H.; Fang, Z.; et al.Dietary Nucleotides Supplementation Improves the Intestinal Development andImmune Function of Neonates with Intra-Uterine Growth Restriction in a PigModel. PLoS ONE 2016, 11, e0157314. [CrossRef]

18.Td, A.; Ge, S.; Xl,A.; Mx, A.; Yong, L.A. Nucleotides as optimal candidates for essentialnutrients in living organisms: A review. J.Funct. Foods 2021, 82, 104498. [CrossRef]

19.Carver, J.D. Dietarynucleotides: Cellular immune, intestinal and hepatic system effects. J. Nutr1994, 124, 144s–148s. [CrossRef]

20.Pérez, M.J.;Sánchez-Medina, F.; Torres, M.; Gil, A.; Suárez, A. Dietary nucleotides enhancethe liver redox state and protein synthesis in cirrhotic rats. J. Nutr. 2004,134, 2504–2508. [CrossRef]

21.Sáez-Lara, M.J.;Manzano, M.; Angulo, A.J.; Suárez, A.; Torres, M.I.; Gómez-Llorente, C.; Gil,A.; Fontana, L. Exogenous nucleosides stimulate proliferation of fetal rathepatocytes. J. Nutr. 2004, 134, 1309–1313. [CrossRef]

22.Cheng, Z.; Buentello,A.; Gatlin, D.M., 3rd. Dietary nucleotides inflfluence immune responses andintestinal morphology of red drum Sciaenops ocellatus. Fish. ShellfifishImmunol. 2011, 30, 143–147. [CrossRef]

23.Holen, E.; Bjørge,O.A.; Jonsson, R. Dietary nucleotides and human immune cells. II. Modulation ofPBMC growth and cytokine secretion. Nutrition 2006, 22, 90–96. [CrossRef]

24.Xu, M.; Liang, R.;Li, Y.; Wang, J. Anti-fatigue effects of dietary nucleotides in mice. FoodNutr. Res. 2017, 61, 1334485. [CrossRef][PubMed]

25. Xu, M.; Liang, R.;Guo, Q.; Wang, S.; Zhao, M.; Zhang, Z.; Wang, J.; Li, Y. Dietary nucleotidesextend the life span in SpragueDawley rats. J. Nutr. Health Aging 2013, 17,223–229. [CrossRef]

26.Xu, M.; Zhao, M.;Yang, R.; Zhang, Z.; Li, Y.; Wang, J. Effect of dietary nucleotides on immunefunction in Balb/C mice. Int.Immunopharmacol. 2013, 17, 50–56. [CrossRef][PubMed]

27.Guo, X.; Li, J.; Ran,C.; Wang, A.; Xie, M.; Xie, Y.; Ding, Q.; Zhang, Z.; Yang, Y.; Duan, M.; et al.Dietary nucleotides can directly stimulate the immunity of zebrafifishindependent of the intestinal microbiota. Fish. Shellfifish Immunol. 2019, 86,1064–1071.[CrossRef] [PubMed]

28.Arnaud, A.; López-Pedrosa,J.M.; Torres, M.I.; Gil, A. Dietary nucleotides modulate mitochondrial functionof intestinal mucosa in weanling rats with chronic diarrhea. J. Pediatr.Gastroenterol. Nutr. 2003, 37, 124–131. [CrossRef] [PubMed]

29. Fajemiroye, J.O.; daCunha, L.C.; Saavedra-Rodríguez, R.; Rodrigues, K.L.; Naves, L.M.; Mourão,A.A.; da Silva, E.F.; Williams, N.E.E.; Martins, J.L.R.; Sousa, R.B.; et al.Aging-Induced Biological Changes and Cardiovascular Diseases. Biomed. Res. Int.2018, 2018, 7156435.[CrossRef]

30.Sohal, R.S.;Weindruch, R. Oxidative stress, caloric restriction, and aging. Science 1996,273, 59–63. [CrossRef]

31.López-Otín, C.;Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging.Cell 2013, 153, 1194–1217. [CrossRef]

32.Cao, L.; Lee, S.G.;Park, S.H.; Kim, H.R. Sargahydroquinoic acid (SHQA) suppresses cellularsenescence through Akt/mTOR signaling pathway. Exp. Gerontol. 2021, 151,111406. [CrossRef]

33.Hada, Y.; Uchida,H.A.; Otaka, N.; Onishi, Y.; Okamoto, S.; Nishiwaki, M.; Takemoto, R.;Takeuchi, H.; Wada, J. The Protective Effect of Chlorogenic Acid on VascularSenescence via the Nrf2/HO-1 Pathway. Int. J. Mol. Sci. 2020, 21, 4527.[CrossRef]

34.Wang, W.; Zheng, Y.;Sun, S.; Li, W.; Song, M.; Ji, Q.; Wu, Z.; Liu, Z.; Fan, Y.; Liu, F.; et al. Agenome-wide CRISPR-based screen identififies KAT7 as a driver of cellularsenescence. Sci. Transl. Med. 2021, 13.[CrossRef]

35.Ma, S.; Sun, S.; Li,J.; Fan, Y.; Qu, J.; Sun, L.; Wang, S.; Zhang, Y.; Yang, S.; Liu, Z.; et al.Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Res.2021, 31, 415–432. [CrossRef] [PubMed]

36.Xu, Y.; Wang, Y.;Yan, S.; Zhou, Y.; Yang, Q.; Pan, Y.; Zeng, X.; An, X.; Liu, Z.; Wang, L.; etal. Intracellular adenosine regulates epigenetic programming in endothelialcells to promote angiogenesis. EMBO Mol. Med. 2017, 9, 1263–1278. [CrossRef]

37.Wiley, C.D.; Campisi,J. From Ancient Pathways to Aging Cells-Connecting Metabolism and CellularSenescence. Cell Metab.2016, 23, 1013–1021. [CrossRef] [PubMed]

38. Wiley, C.D.; Liu,S.; Limbad, C.; Zawadzka, A.M.; Beck, J.; Demaria, M.; Artwood, R.; Alimirah,F.;Lopez-Dominguez, J.A.;Kuehnemann, C.; et al. SILAC Analysis RevealsIncreased Secretion of Hemostasis-Related Factors by Senescent Cells. CellRep.2019, 28, 3329–3337.e5. [CrossRef]

39.Verdin, E. NAD+ inaging, metabolism, and neurodegeneration. Science 2015, 350, 1208–1213.[CrossRef] [PubMed]

40.Fernandez-Marcos,P.J.; Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrialbiogenesis. Am. J. Clin. Nutr. 2011,93, 884s–890. [CrossRef]

41.Jafari, A.;Hosseinpourfaizi, M.A.; Houshmand, M.; Ravasi, A.A. Effect of aerobic exercisetraining on mtDNA deletion in soleus muscle of trained and untrained Wistarrats. Br. J. Sports Med. 2005, 39, 517–520. [CrossRef] [PubMed]

42.Yoshino, J.; Baur,J.A.; Imai, S.I. NAD(+) Intermediates: The Biology and Therapeutic Potential ofNMN and NR. Cell Metab. 2018, 27, 513–528. [CrossRef]

43.de Picciotto, N.E.;Gano, L.B.; Johnson, L.C.; Martens, C.R.; Sindler, A.L.; Mills, K.F.; Imai, S.;Seals, D.R. Nicotinamide mononucleotide supplementation reverses vasculardysfunction and oxidative stress with aging in mice. Aging Cell 2016, 15, 522–530.[CrossRef] [PubMed]

44.Widlansky, M.E.;Hill, R.B. Mitochondrial regulation of diabetic vascular disease: An emergingopportunity. Transl. Res. 2018, 202,83–98. [CrossRef] [PubMed]


分享