1.Liu, Z.; Wu, K.K.;Jiang, X.; Xu, A.; Cheng, K.K. The role of adipose tissue senescence in obesity-and aging-related metabolic disorders. Clin. Sci. 2020, 134, 315–330.[CrossRef]
2.Jura, M.; Kozak,L.P. Obesity and related consequences to aging. Age 2016, 38, 23. [CrossRef]
3.Jung, S.M.;Sanchez-Gurmaches, J.; Guertin, D.A. Brown Adipose Tissue Development andMetabolism. Handb. Exp. Pharmacol.2019, 251, 3–36.
4.Chondronikola, M.;Volpi, E.; Børsheim, E.; Porter, C.; Annamalai, P.; Enerbäck, S.; Lidell, M.E.;Saraf, M.K.; Labbe, S.M.;Hurren, N.M.; et al. Brown adipose tissue improveswhole-body glucose homeostasis and insulin sensitivity in humans. Diabetes2014, 63, 4089–4099. [CrossRef]
5.Graja, A.; Gohlke,S.; Schulz, T.J. Aging of Brown and Beige/Brite Adipose Tissue. Handb. Exp.Pharmacol. 2019, 251, 55–72.
6.Bargut, T.C.L.;Silva-e-Silva, A.C.A.G.; Souza-Mello, V.; Mandarim-de-Lacerda, C.A.; Aguila,M.B. Mice fed fifish oil diet and upregulation of brown adipose tissuethermogenic markers. Eur. J. Nutr. 2016, 55, 159–169. [CrossRef]
7.Gao, P.; Jiang, Y.;Wu, H.; Sun, F.; Li, Y.; He, H.; Wang, B.; Lu, Z.; Hu, Y.; Wei, X.; et al.Inhibition of Mitochondrial Calcium Overload by SIRT3 Prevents Obesity- orAge-Related Whitening of Brown Adipose Tissue. Diabetes 2020, 69, 165–180.[CrossRef]
8.Pan, R.; Chen, Y.Management of Oxidative Stress: Crosstalk Between Brown/Beige Adipose Tissuesand Skeletal Muscles. Front.
Physiol. 2021, 12,712372. [CrossRef]
9.Graja, A.; Schulz,T.J. Mechanisms of aging-related impairment of brown adipocyte development andfunction. Gerontology 2015, 61, 211–217. [CrossRef]
10.Herzig, S.; Shaw,R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol.Cell Biol. 2018, 19, 121–135. [CrossRef]
11.Chen, C.; Zhou,M.; Ge, Y.; Wang, X. SIRT1 and aging related signaling pathways. Mech. AgingDev. 2020, 187, 111215. [CrossRef] [PubMed]
12.Carver, J.D.Dietary nucleotides: Cellular immune, intestinal and hepatic system effects. J.Nutr. 1994, 124 (Suppl. S1), 144s–148s.[CrossRef] [PubMed]
13.Wei, Z.; Yi, L.;Xu, W.; Zhou, H.; Zhang, Y.; Zhang, W.; Mai, K. Effects of dietary nucleotideson growth, non-specifific immune response and disease resistance of seacucumber Apostichopus japonicas. Fish Shellfifish Immunol. 2015, 47, 1–6.[CrossRef] [PubMed]
14.Xie, C.Y.; Wang,Q.; Li, G.; Fan, Z.; Wang, H.; Wu, X. Dietary supplement with nucleotides inthe form of uridine monophosphate or uridine stimulate intestinal developmentand promote nucleotide transport in weaned piglets. J. Sci. Food Agric.2019,99, 6108–6113. [CrossRef] [PubMed]
15.Cai, X.; Bao, L.;Wang, N.; Xu, M.; Mao, R.; Li, Y. Dietary Nucleotides Supplementation and LiverInjury in Alcohol-Treated Rats:A Metabolomics Investigation. Molecules 2016,21, 435. [CrossRef]
16.Dong, W.; Wu, Z.;Xu, L.; Fang, Y.; Xu, Y. Maternal supplementation of nucleotides improves thebehavioral development of prenatal ethanol-exposed mice. Cogn. Affect. Behav.Neurosci. 2014, 14, 879–890. [CrossRef]
17.Xu, M.; Liang, R.;Guo, Q.; Wang, S.; Zhao, M.; Zhang, Z.; Wang, J.; Li, Y. Dietary nucleotidesextend the life span in Sprague Dawley rats. J. Nutr. Health Aging 2013, 17,223–229. [CrossRef]
18.Siahanidou, T.;Mandyla, H.; Papassotiriou, I.; Anagnostakis, D. Serum lipids in preterminfants fed a formula supplemented with nucleotides. J. Pediatr. Gastroenterol.Nutr. 2004, 38, 56–60. [CrossRef]
19.Kiss, T.;Nyúl-Tóth, Á.; Balasubramanian, P.; Tarantini, S.; Ahire, C.; Yabluchanskiy,A.; Csipo, T.; Farkas, E.; Wren, J.D.;Garman, L.; et al. Nicotinamide mononucleotide(NMN) supplementation promotes neurovas-cular rejuvenation in aged mice:Transcriptional footprint of SIRT1 activation, mitochondrial protection,anti-inflflammatory, and anti-apoptotic effects. Geroscience 2020, 42, 527–546.[CrossRef]
20.Butterfifield,D.A.; Poon, H.F. The senescence-accelerated prone mouse (SAMP8): A model ofage-related cognitive decline with relevance to alterations of the geneexpression and protein abnormalities in Alzheimer’s disease. Exp. Gerontol.2005, 40, 774–783.[CrossRef]
21.Uejima, Y.;Fukuchi, Y.; Nagase, T.; Tabata, R.; Orimo, H. A new murine model of aginglung: The senescence accelerated mouse (SAM)-P. Mech. Aging Dev. 1991, 61,223–236. [CrossRef]
22.Liu, H.W.; Chan,Y.C.; Wei, C.C.; Chen, Y.A.; Wang, M.F.; Chang, S.J. An alternative model forstudying age-associated metabolic complications:Senescence-accelerated mouseprone 8. Exp. Gerontol. 2017, 99, 61–68. [CrossRef] [PubMed]
23.Allison, D.B.;Ren, G.; Peliciari-Garcia, R.A.; Mia, S.; McGinnis, G.R.; Davis, J.; Gamble,K.L.; Kim, J.A.; Young, M.E. Diurnal, metabolic and thermogenic alterations ina murine model of accelerated aging. Chronobiol. Int. 2020, 37, 1119–1139.[CrossRef] [PubMed]
24.Yamaguchi, S.;Franczyk, M.P.; Chondronikola, M.; Qi, N.; Gunawardana, S.C.; Stromsdorfer,K.L.; Porter, L.C.; Wozniak, D.F.;Sasaki, Y.; Rensing, N.; et al. Adiposetissue NAD(+) biosynthesis is required for regulating adaptive thermogenesisand whole-body energy homeostasis in mice. Proc. Natl. Acad. Sci. USA 2019,116, 23822–23828. [CrossRef] [PubMed]
25.Chondronikola, M.;Volpi, E.; Børsheim, E.; Porter, C.; Saraf, M.K.; Annamalai, P.; Yfanti, C.;Chao, T.; Wong, D.; Shinoda, K.; et al.Brown Adipose Tissue Activation IsLinked to Distinct Systemic Effects on Lipid Metabolism in Humans. CellMetab.2016, 23, 1200–1206. [CrossRef]
26.Tint, M.T.;Michael, N.; Sadananthan, S.A.; Huang, J.Y.; Khoo, C.M.; Godfrey, K.M.; Shek,L.P.C.; Lek, N.; Tan, K.H.; Yap, F.; et al.Brown Adipose Tissue, Adiposity, andMetabolic Profifile in Preschool Children. J. Clin. Endocrinol. Metab. 2021,106, 2901–2914.[CrossRef]
27.Xu, M.; Liang, R.;Li, Y.; Wang, J. Anti-fatigue effects of dietary nucleotides in mice. FoodNutr. Res. 2017, 61, 1334485. [CrossRef]
28.Cui, X.; Xiao, W.;You, L.; Zhang, F.; Cao, X.; Feng, J.; Shen, D.; Li, Y.; Wang, Y.; Ji, C.; etal. Age-induced oxidative stress impairs adipogenesis and thermogenesis inbrown fat. FEBS J. 2019, 286, 2753–2768. [CrossRef]
29.Zhang, J.Y.; Zhao,X.Y.; Wang, G.Y.; Wang, C.M.; Zhao, Z.J. Food restriction attenuates oxidativestress in brown adipose tissue of striped hamsters acclimated to a warmtemperature. J. Therm. Biol. 2016, 58, 72–79. [CrossRef]
30.Zhou, S.S.; Cao,L.L.; Xu, W.D.; Cao, J.; Zhao, Z.J. Effect of temperature on oxidative stress,antioxidant levels and uncoupling protein expression in striped hamsters. Comp.Biochem. Physiol. A Mol. Integr. Physiol. 2015, 189, 84–90. [CrossRef]
31.Uldry, M.; Yang,W.; St-Pierre, J.; Lin, J.; Seale, P.; Spiegelman, B.M. Complementary action ofthe PGC-1 coactivators in mitochondrial biogenesis and brown fatdifferentiation. Cell Metab. 2006, 3, 333–341. [CrossRef] [PubMed]
32.Puigserver, P.;Wu, Z.; Park, C.W.; Graves, R.; Wright, M.; Spiegelman, B.M. A cold-induciblecoactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998,92, 829–839. [CrossRef]
33.Harms, M.; Seale,P. Brown and beige fat: Development, function and therapeutic potential. Nat.Med. 2013, 19, 1252–1263. [CrossRef]
34.Harms, M.J.;Ishibashi, J.; Wang, W.; Lim, H.W.; Goyama, S.; Sato, T.; Kurokawa, M.; Won,K.J.; Seale, P. Prdm16 is required for the maintenance of brown adipocyteidentity and function in adult mice. Cell Metab. 2014, 19, 593–604. [CrossRef][PubMed]
35. Seale, P.; Bjork,B.; Yang, W.; Kajimura, S.; Chin, S.; Kuang, S.; Scimè, A.; Devarakonda, S.;Conroe, H.M.; Erdjument-Bromage, H.; et al.PRDM16 SAMP8-NCs a brownfat/skeletal muscle switch. Nature 2008, 454, 961–967. [CrossRef]
36.Yang, X.; Liu, Q.;Li, Y.; Tang, Q.; Wu, T.; Chen, L.; Pu, S.; Zhao, Y.; Zhang, G.; Huang, C.; etal. The diabetes medication canagliflflozin promotes mitochondrial remodellingof adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway. Adipocyte 2020, 9,484–494.[CrossRef]
37.Xu, W.; Yan, J.;Ocak, U.; Lenahan, C.; Shao, A.; Tang, J.; Zhang, J.; Zhang, J.H. Melanocortin1 receptor attenuates early brain injury following subarachnoid hemorrhage bySAMP8-NCling mitochondrial metabolism via AMPK/SIRT1/PGC-1α pathway in rats. Theranostics2021, 11, 522–539. [CrossRef]
38.Tian, L.; Cao, W.;Yue, R.; Yuan, Y.; Guo, X.; Qin, D.; Xing, J.; Wang, X. Pretreatment withTilianin improves mitochondrial energy metabolism and oxidative stress in ratswith myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alphasignaling pathway. J. Pharmacol. Sci. 2019, 139, 352–360. [CrossRef]
39.Eo, H.; Jeon,Y.J.; Lee, M.; Lim, Y. Brown Alga Ecklonia cava polyphenol extract ameliorateshepatic lipogenesis, oxidative stress,and inflflammation by activation of AMPKand SIRT1 in high-fat diet-induced obese mice. J. Agric. Food Chem. 2015, 63,349–359.[CrossRef]
40.Rao, Y.; Yu, H.;Gao, L.; Lu, Y.T.; Xu, Z.; Liu, H.; Gu, L.Q.; Ye, J.M.; Huang, Z.S. Naturalalkaloid bouchardatine ameliorates metabolic disorders in high-fat diet-fedmice by stimulating the sirtuin 1/liver kinase B-1/AMPK axis. Br. J.Pharmacol.2017, 174, 2457–2470. [CrossRef]